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Abstract
We study the curvature dependence of thermodynamical quantities such as the
surface tension γ and the excess adsorptions �i of fluid mixtures in contact with
curved walls. If mixtures with short-ranged interaction at state points away from
any phase separation are considered, all intrinsic length scales remain small,
and we can generalize to mixtures recent findings for the one-component fluid.
In addition, we relate the excess surface grand potential to B2, the effective
second virial coefficient between big particles of a mixture after integrating out
the degrees of freedom of the smaller components.

1. Introduction

Close to a wall, a fluid develops in general an inhomogeneous structure which gives rise to
surface thermodynamic quantities like γ , the interfacial wall–fluid tension, or �, the excess
(over the bulk) amount of fluid adsorbed at the wall. If the wall is curved, �, the grand
potential of the system, as well as surface thermodynamic quantities, depends on the shape
S of the wall in a potentially complicated way, which makes a direct calculation of these
quantities in complex geometries practically impossible. However, in recent studies of the
connection between the shape of the wall and thermodynamic quantities [1] and structure [2]
of a pure fluid away from the critical point and in absence of wetting or drying phenomena, it
was shown that the curvature can enter thermodynamic quantities in a simple and elegant way.
For state points of the fluid for which all intrinsic length scales, like the correlation length ξ ,
remain small, we can follow [1] in its application of Hardwiger’s theorem [3–5] and extend
these considerations to the case of fluid mixtures.

In addition, we relate �surf the surface grand potential of a fluid mixture in contact with
one big particle to the effective second virial coefficient B2 between big particles in a sea of
small ones, after the degrees of freedom of the small particles are integrated out. This virial
coefficient corresponds to an average over the two-body term of the effective Hamiltonian [6].
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To illustrate this relation, we consider the special case of hard-sphere mixtures and calculate
a closed expression for B2 within an approximate thermodynamic approach [7].

2. Theory

We consider a ν-component fluid mixture in the grand ensemble close to a curved wall.
All fluid–fluid and wall–fluid interactions are assumed to be short-ranged (finite-ranged,
exponentially or faster decaying). If all intrinsic length scales remain small we can argue,
following [1], that it is reasonable to assume that the functional �[S], the grand potential of a
fluid mixture adsorbed on a curved wall, satisfies (at least to a very good approximation) the
following three conditions. (i) Motion invariance: the functional remains unchanged under all
rotations and translations g: �[gS] = �[S]. (ii) Continuity: for a series Sn approximating
the shape of the wall S, the functional �[Sn] → �[S] for n → ∞ if Sn approaches S in the
same limit. (iii) Additivity: the functional of the union of two domains Si , i = 1, 2, is given
by �[S1 ∪ S2] = �[S1] + �[S2] − �[S1 ∩ S2]. According to Hardwiger’s theorem [3–5], all
functionals �[S] that satisfy conditions (i)–(iii) can be written in the form

�[S] = −pV [S] + σ A[S] + κC[S] + κ̄ X[S], (1)

where the accessible volume V [S] = ∫
S dV , the surface area A[S] = ∫

∂S d A, the integrated
mean curvature C[S] = ∫

∂S H d A/(4π) and the integrated Gaussian curvature or Euler
characteristic X[S] = ∫

∂S K d A/(4π) are the only morphometric measures required to
describe the geometrical shape of the wall. We have used that at any point r on the
surface ∂S of the wall there are two principal radii of curvature R1(r) and R2(r) from
which the local mean curvature H (r) = (1/R1(r) + 1/R2(r))/2 and the local Gaussian
curvature K (r) = 1/(R1(r)R2(r)) follow. The corresponding thermodynamic coefficients in
equation (1) are the pressure p, the surface tension at a planar wall σ , and two bending rigidities
of the fluid mixtures κ and κ̄. Thus equation (1) separates completely the thermodynamic
properties of the mixture, that depend on the state point of the fluid and the wall–particle
interactions, from the shape of the wall. As a consequence, it is possible to determine
the coefficients σ , κ and κ̄ in simple geometries with high symmetry, like spherical and
cylindrical walls.

It is important to appreciate the importance of the choice of a dividing interface when
calculating surface thermodynamic quantities. The total grand potential � of the mixture is,
of course, uniquely defined; however, when split into volume, surface and curvature terms,
the particular choice of the dividing surface is reflected in the magnitude and possibly in the
sign of the thermodynamic coefficients. Once the location of the dividing interface is fixed, all
morphometric measures V , A, C and X must be calculated consistently using this definition,
and the thermodynamic coefficients σ , κ and κ̄ correspond to this definition.

From the morphometric form of the grand potential, equation (1), it follows immediately
that surface thermodynamic quantities also possess a morphometric form. For example the
interfacial tension γ of the fluid mixture in contact with a curved wall has, beside the planar
wall term σ , only two curvature terms [1] and can be written as

γ ≡ 1

A
�surf = σ + κ H̄ + κ̄ K̄ (2)

where we have used that �surf ≡ � + pV and H̄ = C/A and K̄ = X/A. This is an important
result and clearly requires numerical tests. The interfacial tension at a spherical wall should
display a quadratic dependence on the curvature 1/Rc, where Rc is the radius of curvature,
while that at a cylindrical wall should depend only linearly on the curvature. Since the number
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of parameters is too large and in fact infinite, it is impossible to verify this result systematically.
We have performed density functional theory (DFT) calculation calculations [8–10] for binary
hard-sphere mixtures with radii Rb and Rs and various values of the size ratio q = Rs/Rb at
curved spherical and cylindrical walls with different radii of curvatures. We always found full
agreement between our DFT results and the morphometric form of γ , equation (2).

From the interfacial tension γ , equation (2), it is straightforward to calculate the excess
adsorption of species i with the help of the Gibbs adsorption theorem:

�i ≡ 1

A

∫

V
d3r (ρi (r) − ρi ) = −

∑

j

(
∂µi

∂ρ j

)−1
∂γ

∂ρ j
= �σ

i + �κ
i H̄ + �κ̄

i K̄ , (3)

where ρi are the bulk densities at given chemical potentials {µi}. For hard walls the sum
over the integrated (over the surface) contact densities ρ̄c

i becomes a thermodynamic quantity
through the wall theorem [1]:

1

A

∑

i

ρ̄c
i = βp + 2βσ H̄ + κ K̄ , (4)

where β = 1/kBT .

2.1. Effective second virial coefficient

In the case of a size asymmetric mixture, it can be useful to integrate out the degrees of freedom
of the smaller particles and describe the remaining degrees of freedom of the big ones, denoted
in the following by b, within an effective Hamiltonian [6]. The big particles then interact via an
effective potential, which can be calculated in various ways, e.g. by fixing a single big particle,
calculating the density distribution of the smaller particles s around it and finally inserting a
second big particle into the inhomogeneous sea of small ones [11]. The approach we describe
here is valid for general shapes and multi-component mixtures of small ones; however, in order
to keep the notation simple, we specialize here to the case of mixtures of hard spheres. The
resulting depletion potential W (r), which in our case has spherical symmetry, is connected to
the density profile ρb(r) of big spheres around the fixed big sphere by [11]

lim
ρb→0

ρb(r)

ρb
= exp(−βW (r)). (5)

While W (r) is a microscopic quantity, the effective second virial coefficient B2 between big
spheres, which results from the bare and the effective interactions, is a thermodynamic quantity
and can be calculated from the surface grand potential �surf . From equation (5) and the Gibbs–
Duhem relation ∂p/∂µb = ρb at fixed T and V , we obtain

lim
ρb→0

1

ρb

∂�surf

∂µb
= lim

ρb→0

∫

V
d3r

(

1 − ρb(r)

ρb

)

= c + 4π

∫ ∞

2Rb

dr r2(1 − e−βW (r)), (6)

where c is a constant depending on the choice of the dividing interface. Here we fix the dividing
interface to be the surface of the big sphere and obtain c = R3

b 28π/3. Equation (6) can be
rewritten easily to express B2, the effective second virial coefficient:

B2 = BHS
2 + 2π

∫ ∞

2Rb

dr r2 (
1 − e−βW (r)

) = lim
ρb→0

1

2ρb

∂�surf

∂µb
+

2π

3
R3

b, (7)

where BHS
2 = R3

b 16π/3 is the hard-sphere second virial coefficient. Equation (7) is an exact
relation. Note that the constant on the rhs of equation (7) is BHS

2 − c/2 and depends on the
definition of the dividing interface.
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3. Application within a bulk approach

We consider a mixture of hard spheres in the bulk. The reduced excess free-energy density of
this mixture corresponding to the approximate MCSL equation of state [12] is given by [8, 9]

β� = −n0 log(1 − n3) +
n1 n2

1 − n3
+

n2
3

(
n3 + (1 − n3)

2 log(1 − n3)
)

36 π (1 − n3)
2 n3

2
(8)

where � is a function of the weighted densities nα , α = 0, . . . , 3, which for a homogeneous
bulk mixture reduce to n0 = ∑

i ρi , n1 = ∑
i ρi Ri , n2 = ∑

i ρi 4π R2
i and n3 = ∑

i ρi 4π R3
i /3,

and the sum runs over all ν components of the mixture. Following the bulk approach for a pure
hard-sphere fluid [7], we start with a bulk mixture, for which we know the grand potential to
be −pVtot, and insert a single big sphere with radius Rb. From the change in grand potential
of the system we can identify closed approximate expressions for σ the surface tension and κ

and κ̄, the bending rigidities [7]:

σ = ∂�

∂n2
, κ = ∂�

∂n1
, κ̄ = ∂�

∂n0
. (9)

From this we can obtain an approximate expression for the interfacial tension of a hard-
sphere mixture at a curved hard wall. We have verified with a density functional theory
calculation [8–10] for binary hard-sphere mixtures at spherical and cylindrical walls that γ

obtained by inputting the approximate bulk expressions for σ , κ and κ̄ from equation (9)
into (2) gives a reasonable account for the interfacial tension of binary hard-sphere mixtures
if the size ratio q = Rs/Rb remains sufficiently large. We assume that similar agreement can
also be found for multi-component mixtures as long as the total packing fraction and size ratios
remain moderate.

3.1. B2 in hard-sphere mixtures

The approximate bulk expressions for σ , κ and κ̄ can be employed to evaluate the second virial
coefficient in a binary mixture of spheres in the dilute limit of big spheres using equation (7).
It is possible to obtain a closed expression for B2/BHS

2 ; however, it is quite lengthy and we
shall discuss here only the limiting behaviour ρs → 0 and compare the approximate form with
numerical results.

In the limit of ρs → 0, the depletion potential W (r) entering equation (7) reduces to
the well-known Asakura–Oosawa–Vrij expression [13–15]. In the same limit the exponential
function in equation (7) can be linearized and the low-density behaviour of the second virial
coefficient is given to be

lim
ρs→0

B2/BHS
2 = 1 + ηsc

AO + O(η2
s ), (10)

where ηs = 4π R3
s /3 ρs with the exact first order in ηs contribution

cAO = − 1
8 {12 + q [15 + q (6 + q)]} < 0, (11)

which is exactly recovered by the approximate expression for B2 based on equation (9). For
sufficiently small values of ρs, the effective second virial coefficient in a mixture of hard spheres
decreases linearly.

In figure 1 we show the effective second virial coefficient B2/BHS
2 as a function of ηs for

various values of the size ratio q = Rs/Rb. For small values of ηs, we find B2 to decrease
linearly, as predicted by equation (10). Although not visible on the scale of figure 1, we
find, in agreement with equation (11), that the slope of B2/BHS

2 for small values of ηs is
larger for more symmetric mixtures and smaller for asymmetric ones. For q = 1/3 we
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Figure 1. The effective second virial coefficient B2/BHS
2 in a binary hard-sphere mixture as a

function of ηs = 4π R3
s /3 ρs for various values of the size ratio q = Rs/Rb. The lines denote

results obtained from the closed approximate expression within the bulk approach. The symbols
are calculated from depletion potentials using density functional theory.

find very good agreement between the approximate form of B2/BHS
2 (full line) and values of

the second virial coefficient calculated from the depletion potential (circles) [11, 16] for all
values of ηs in the fluid regime. B2/BHS

2 remains always positive, indicating the overall weak
effect of the depletion potential for q = 1/3. As the mixture becomes more asymmetric,
the depletion potential becomes more attractive close to contact and develops more structure
at larger distances [11]. Therefore the second virial coefficient can become negative for
sufficiently high values of ηs. In contrast to the behaviour of B2/BHS

2 based on the numerical
depletion potential (symbols), which displays a minimum around ηs ≈ 0.4 [16] for all values of
q , the bulk approximation predicts a monotonic decay (lines). Given the simplicity of the bulk
approximation, the magnitude of the second virial coefficient is predicted surprisingly well.

4. Conclusion

We have studied fluid mixtures at curved walls. Following the morphometric approach [1] for
pure fluids, we assume that the geometry of the curved wall and the thermodynamical properties
of the fluid mixture separate into morphometric measures V , A, C and X , and corresponding
thermodynamical coefficients p, σ , κ and κ̄. As a consequence, thermodynamic quantities
like the interfacial tension γ or the excess adsorptions �i , i = 1 . . . , ν, have a very simple
curvature dependence. We have verified this within density functional theory for binary hard-
sphere mixtures (not shown here).

We have shown that the effective second virial coefficient can be calculated from the
surface grand potential �surf . This relation can be employed within a bulk approximation
to systematically study the behaviour of B2 and the corresponding depletion potential for
multi-component mixtures.
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